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Memory interfacing is an essential topic for digital system design.  In fact the 
among silicon area devoted to memory in a typical digital embedded system 
or a computer system is substantial.  For example, in a mobile phone, the 
number of transistors devoted to memory is many times more than those 
used for computation.  For the second year course, I will only focus on 
interfacing to static memory, known as RAM (Random Access Memory) or 
ROM (Read-Only Memory).  There are other types of memory such as 
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory 
(Flash RAM) which will not be covered on this course.
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This slide shows a typical organisation inside a RAM chip.  Memory cells are 
usually organised in the form of a  2-D array of RAM cells.  These are 
accessed first in a row, then in a column.  The address bus is divided into two 
components, the row address (8-bit in the example here) and the column 
address (4-bit in this example).  There is a decode to translate the 8-bit row 
address into one-hot outputs in order to specify which row is being accessed. 
Only ONE ROW will be enable at any one time (hence one-hot).  

The second part of the address (normally the less significant bits) is used as 
select signal into the output mux. This is because when memory is accessed, 
they are normally read or written in a sequence.  Using LSB for column 
decoding means that one stays on the same row of memory as much as 
possible.  Staying in the same row uses significantly lower energy than 
switching between rows in memory accesses. 
In the example here, the 4-bit column address is used to select from a 16-to-1 
mux to provide the correct location in memory to access.  There are 16 
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the 
data bus.
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Here is a 8K x 8 static RAM chip and its associated digital signals.  The 13-bit 
address bus A12:0, the 8-bit data bus D7:0 are mandatory.  There are three 
more control signals:  Output Enable OE which we have seen before, Chip 
Enable CE which is used to address or select this particular memory chip 
(hence the name), and finally the WRITE ENABLE signal WE, which, when 
set high, indicates that you are writing to the RAM chip, and is normally low 
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a 
tri-state bus.  This means that the pin could be an input pin, output pin, or an 
open-circuit pin (i.e. not connected to anything – we call the signal floating).  
The truth table shown here specifies the behaviour of the data bus in one of 
the three possible states.
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For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.  
Let us assume that each data bit array is organised as a 256 rows  x 32 
column (=8192) of memory cells.  Eight such array are placed next to each 
other to form the 8 data bits required.  This makes the memory chip roughly 
square (which is generally desirable).  
You can think of the row decoder and the column selector driven by the 13-bit 
address as a 8192 way multiplexer, selecting one of 8192 cells organised as 
256 x 32, to be accessed.    
The simplified circuit of each memory cell shown here consists of two 
inverters and two switches is a schematic of the read-write circuit.  When 
reading from the cell, A12:0 select one of 8192 cells to route its signal via the 
right inverter to Dn.  Now Dn is an output pin.  This only happens if CE*OE* 
!WR = 1 (i.e. asserting CE and OE, but not asserting WR). 
When writing to the memory cell, the right switch is open, Dn is an input pin 
driving the left hand inverter and the output switch from that inverter is closed 
because both CE and WR are asserted.
Some memory chips have separate Din and Dout pins, but that’s expensive 
on pins and is not particularly common nowadays.
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Here is a slide showing a generic interfacing between a microprocessor and a 
memory sub-system.  We assume that we use a 16-bit address bus and an 8-
bit data bus.  The control signals go between the two to control the transfer of 
information, and is in general governed by the microprocessor which acts as 
the “master”.
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While we show memory as a block, in a real system, the memory address 
space is divided into many different partitions.  Here we use ‘$’ (instead of 
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left 
hand diagram shows the memory being partitioned into 32k of RAM, 16k of 
ROM and 4k space for input/output devices.
A design needs to take the upper bits of the address bus and decode 
these bits into enable signals for the three different partitions.  In this case, 
we can see that we only need to decode A15:12 according to the Boolean 
equations shown here.  What about A11:0?  These are the address bits used 
inside the RAM, ROM and input/output modules to select particular locations.
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Selecting which memory sub-system and therefore which memory chip to 
enable is the job of the address decoder circuit.  This circuit takes the upper 
bits of the address bus, and produce enable signals for RAM, ROM and 
INOUTx for a particular I/O device.  
In the previous slide, we showed that the input/output occupies 4k of memory 
space. This is uncommon.  Typically an I/O device may take up, say, 4 
memory locations.  
In this example, INOUTx occupies only the address space $F574 - $F577, 
i.e. 4 locations.  Therefore we need to decode lots of address signals: A15:2.
Can you work out the Boolean equations for the address decoder shown 
here?
The ROM CE signal is another challenge. The ROM is enable if the address 
A15:A12 falls between the range 4’b1011 and 4’b1110.  You should prove for 
yourself that the Boolean equation to decode the address for the ROM is as 
shown here.
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In addition to the address decoder circuit, we need to provide the control 
signals from the microprocessor to the memory chips.  Here we assume there 
exists at least two control signals from the microprocessor: MCLOCK which is 
memory clock signal (which may be different from the system clock signal 
CLOCK), and a WRITE signal, which is high when writing to memory, but low 
otherwise.
The interaction between the microprocessor and memory can be separated 
into two types of transactions: a Read Cycle and a Write Cycle.
During Read Cycle, the microprocessor asserts the address A15:0 and the 
control signals MCLOCK and WRITE.  Shortly after the beginning of the Read 
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the 
second half of the cycle, we assume that memory will then provide the data 
for the microprocessor to read.  Reading is actually performed at the end of 
the Read Cycle, on the falling edge of MCLOCK.  Note that I use red colour to 
indicate the action of the microprocessor on the data bus, and blue colour for 
the action by the memory chip on the data bus.
During a Write Cycle, the microprocessor drives everything.  Writing also 
occurs on the falling edge of MCLOCK in our case.  (Note that other system 
may have a different protocol than the one shown here.)
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This slide shows the control circuit used to interface the 
microprocessor to the 32k x 8 RAM chip.  
Chip Enable (CE) is driven by the output from the address decoder, 
which we have considered in an earlier slide.  Remember the colour 
code I am using: RED driven by the microprocessor, BLUE driven by 
memory.
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Let us now consider the timing constraints imposed by memory during a 
Read Cycle.  First thing that happens would be a valid address A12:0 being 
presented at (1).  As a typical example for memory timing, it is assume that 
data D7:0 holds for at least 2ns before changing, but it is guaranteed to 
provide the correct D7:0 at the new address in 8ns or earlier.  This is address 
to data ACCESS TIME for this RAM.  Note that even if new and old location 
have the same data value, there will be period when D7:0 contain rubbish –
beware.   Also note that memory is providing data to be read by the 
microprocessor, CE, OE and ~WR must all be asserted (i.e. ‘1’).
At (2), memory is deselected or output not enabled, or we are no longer 
reading from memory.  D7:0 again is guaranteed to go high-impedance after 
2ns.
Some time later, if member is selected again at (3), it takes 2ns before 
memory start to drive D7:0, but guaranteed to provide correct data after 4ns.
The most important delay here is that from address or OE to data.  They are 
called address access time and output enable access time.  Usually address 
access timing is longer (here it is 8ns) than OE access time (4ns) because 
output enable simply enable the output multiplex stage, which is close to the 
data output pin.  Address access involves decoding the address values to 
produce the one-hot row select signal (known as the WORD line), and then 
the row of memory cells needs to present its data to the column multiplexer.  
Selecting which row to access is generally a much slower process than the 
column multiplexer.
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Here is the timing for the Write Cycle.  Remember that Write Cycle timing is 
particularly important – any timing error here could result in corrupting the 
contents store in RAM.

(1)The write pulse is signified by CE and WR both being asserted (i.e. 
TRUE).  There is usually a minimum period specified – here 10ns.  Also as 
soon as the WR is asserted, WR = 1 and D7:0 must go high-impedance 
within 2ns (i.e. memory no longer driving the data bus).
(2)The address A12:0 must be stable at least 2ns before the write pulse, and 
it must hold for another 2ns after the write pulse.
(3)The data is written to memory on the falling edge of the write pulse.  The 
setup and hold time is 4ns and 1ns respectively.
(4)This is when the Write Cycle finishes, and we go back to Read Cycle.  
Expect D7:0 stays high impedance for at least 2ns.
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The previous two slides only look at the timing constraints from the 
perspective of memory.  Here we must consider what the 
microprocessor expects about timing.

We assume that falling edge of MCLOCK starts a memory transaction 
cycle.  Gates are assumed to have a 1ns delay.  Therefore WR and OE 
signals are delayed by 1ns.  A15:0 is assumed to hold its previous 
value for at least 3ns, but will go to the new vale by 8ns. The same is 
true with the WRITE signal.  
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Let us consider the timing constraints when the microprocessor is reading 
from RAM, using all the timing specifications we have defined in previous 
slides.   Here the microprocessor is assumed to have a data setup time of 
4ns, and hold time of 2ns relative to the following edge of MCLOCK (when 
reading occurs).
The three timing inequality are:
(1)Address to Data setup time – RAM must provide the data to the micro 
early enough for the micro to read it properly.  The setup time of the data 
input to micro is 4ns, the address access time of the RAM is 8ns, and the 
address is only stable 8ns after the falling edge of MCLOCK.  Therefore we 
obtain the left side of the inequality.
(2)WRITE to Data setup time – We need to check the WRITE signal to data 
setup.  The WRITE signal goes low (indicating a read cycle) at 8ns. The 
worst case path is to OE is through two gates, adding another 2ns delay.  
RAM access time from OE is 4ns and the data setup time is 4ns.  The total of 
this must be less than or equal to 20, which it is.
(3)Finally, the MCLOCK to Data setup time – MCLOCK also control OE and 
WR, so we need to check that it does not violate any timing requirement.  
MCLOCK goes high at 10ns, and there is a 1ns delay with the AND gate. 
Adding 4ns OE setup time and 4ns micro data setup time, the total must be 
earlier than 20ns, which it is.
Therefore all the timing constraints for the Read setup time are satisfied.
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Let us now consider the hold time.  This is relatively simple as shown 
here.
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Let us now combine the RAM timing with the microprocessor timing.  There 
are 4 separate timing specifications to consider.
(1)Address to WR setup time – this timing constraint is imposed by RAM that 
address must be stable (set up time) 2ns before WR pulse goes high.  Since 
the WR pulse goes high at 11ns (relative to falling edge of MCLOCK which is 
the reference 0ns), and that the address A12:0 are stable no later than 8ns, 
the constraint is satisfied.
(2)Data to !WR setup time – writing to memory occurs on the falling edge of 
WR.  Data must be stable 4ns before that.  WR goes low at 21ns.  Data is 
stable at 12ns or earlier.  Therefore this constraint is also satisfied.
(3)WR pulse width – this must be at least 10ns.  Since the write pulse starts 
at 11ns and finishes at 21ns, the minimum WR pulse width is just met (with 
no margin).
(4)Address hold time – The address must be held 2ns after WR signal is 
deasserted.  Therefore this hold time is also just met (with no margin).
(5)Data hold time – Data is held for 1ns.  Therefore data hold time is also 
met.

As can be seen, checking all timing constraints being met is quite a tedious 
process.  Fortunately the timing analyzer tools perform all the setup and hold 
time checking for us in Quartus and report any violations.
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